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ABSTRACT 
The modeled response of spacecraft systems must be validated using flight data as ground tests cannot adequately 
represent the flight.  Tools from the field of operational modal analysis would typically be brought to bear on such struc-
tures.  However, spacecraft systems have several complicated issues: 
 

1. High amplitudes of loads;  
2. Compressive loads on the vehicle in flight; 
3. Lack of generous time-synchronized flight data; 
4. Changing properties during the flight; and 
5. Major vehicle changes due to staging. 

 
A particularly vexing parameter to extract is modal damping.  Damping estimation has become a more critical issue as 
new mass-driven vehicle designs seek to use the highest damping value possible.  The paper will focus on recent efforts 
to utilize spacecraft flight data to extract system parameters, with a special interest on modal damping.  This work utiliz-
es the analysis of correlation functions derived from a sliding window technique applied to the time record.  Four differ-
ent case studies are reported in the sequence that drove the authors’ understanding.  The insights derived from these four 
exercises are preliminary conclusions for the general state-of-the-art, but may be of specific utility to similar problems 
approached with similar tools. 
 
INTRODUCTION 
The spacecraft launch environment is a highly complex event that is characterized by high amplitude input forces, highly 
variable loads, a wide spectrum of responses, constantly changing vehicle mass, active control interactions, and staging.  
At the same time, structural response analyses and loads estimations must be performed with models that are only partial-
ly validated using ground test data.  In fact in modern design cycles, the access to diagnostic and environmental ground 
tests is also limited.  To compound matters, project managers tend to reduce uncertainty factors designed to protect for 
loads increases and model unknowns.  As a result, the designs progress rapidly before loads and structural problems are 
uncovered.  This means that there are very few tools available to recover from structural dynamics issues in such a highly 
dynamic environment without costly redesigns late in the design cycle or in early operations.  
 
One tool is the further reduction of any uncertainty factors that cover model unknowns, which are driven strongly by the 
need to know the modal frequencies.  Since the ability to obtain good modal frequency information is limited by ground 
test availability, the flight data from early test flights and early operational flights must be used to estimate frequency 
values.  Another of the tools available is to adjust the assumed damping values for the flight environment.  Most structur-
al dynamics specialists realize that damping is not a parameter that can be determined with any certainty (even in high 
controlled laboratory situations).  However, vigorous discussions about damping in the flight environment are becoming 
a more common occurrence.  The industry as a whole is very limited on tools and techniques to estimate damping from 
flight data.  This paper contains information about early attempts to understand and develop frequency and damping es-
timation in the flight environment. 
 
The obvious starting point for estimating modal parameters from a structure in the field is the current technology of Op-
erational Modal Analysis (OMA) [1].  This rapidly advancing field of study is developing and applying techniques to es-
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timate modal parameters for operational structures with response measurements but without a measure of the input 
forces.  These techniques are focused on ground-based structures that are stable and long measurement times are general-
ly available.  There were attempts at operational modal analyses as early as the 1960’s.  However, it was in the 1990’s 
before the early generalized techniques were available [2, 3].  There are two general classes of algorithms for performing 
OMA: (1) time history-based techniques that are generally related to Stochastic Subspace Identification (SSI) [1-6] and 
frequency domain-based techniques that are related to Frequency Domain Decomposition (FDD) [1, 4, 5, 6].   
 
The technical basis for the early time domain approaches involved converting measured responses into auto and cross-
correlation functions and processing with standard time domain modal analysis routines [3].  However, the more general 
SSI techniques directly integrate the correlation calculations and modal processing algorithms into a single step rooted in 
discrete time system identification theory [4, 6].  The earliest manifestations of FDD were peak picking and half-power 
bandwidth estimation schemes operating on the Power Spectral Density (PSD) functions [5].  However the advanced 
FDD algorithms refine the modal parameter estimates using powerful tools like the Singular Value Decomposition 
(SVD) [1, 5].  An interesting direction for frequency domain approaches involves the use of Hilbert transforms applied to 
PSD’s to obtain biased Frequency Response Function (FRF) estimates [1, 7].  There is another direction in operational 
testing that is offering some hope for more fully understanding system dynamics is to estimate the forces acting on the 
system.  This would allow more traditional FRF-based approaches to be used for system identification.  These forces can 
be estimated via known mass changes to the system [8] or via hybrid analytical/experimental data [9]. 
 
There have been a limited number of reported attempts to analyze flight data to extract modal parameter information, al-
though there are certainly many other unreported attempts.  The time domain approaches based on correlation and SSI 
are generally used for flight data analyses as the rapidly changing vehicle properties do not allow the full advantages of 
the frequency-domain approaches to be realized.  The responses are generally broken into a series of sliding windows, 
each of short duration, which are processed individually.  If the loading and system characteristics are fairly constant 
over each window, then estimates of the changing parameters can be obtained as a function of flight time [10-17].   
 
This paper will include four “case studies” with different levels of complexity to exercise these techniques.  A lander 
case study is provided first, which provides some early insight with less complexity to cover the issues.  The second case 
study is a pointer to a launch system analysis that has shown some of the same unusual features that the first case study 
contained but contains all of the complexities expected in a launch system.  The third case study is a series of very simple 
analytical studies using single degree-of-freedom systems to gain insight into the most basic aspects of operational flight 
data analysis seen in the earlier exercises.  The final case study is the analysis of a very rapidly changing system during 
an abort test, which is the most difficult launch system that one can envision.  The insights gained from the observations 
of the earlier case studies has driven the approach to this very difficult data analysis.  The end result of this work are pre-
liminary conclusions for further advancement of the field of operational analysis of rapidly changing systems and specif-
ic application recommendations for similar problems. 
 
TECHNICAL BACKGROUND 
The procedure used in this work will be to calculate auto and cross-correlation functions from response data obtained 
from the vehicle under launch conditions.  It has been shown that these correlation functions are composed of decaying 
sinusoids with the appropriate modal frequency and modal damping.  These modal parameters are then extracted from 
the correlation functions using time domain extraction algorithms [3].  Since the vehicle and the launch environment are 
rapidly changing systems, a sliding window approach is used to repetitively analyze short segments of data and collect 
the information to track changing frequency and damping [10-13].  This utilizes automated environment for the time 
domain modal parameter extraction using a technique (called AUTO-ID) [18, 19].  The addition of this technique eases 
the computational burden of extracting parameters in a consistent manner from the multitude of correlation functions 
calculated from the sliding window segments of the random time histories to allow a rapid assessment of the data.  It is 
expected that in-depth data analysis will follow using a combination of digital filtering [10, 11], time-zooming [17], or 
advanced SSI techniques [15]. 
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CASE STUDY 1 – LANDER SYSTEM FLIGHT 
The RR1 vehicle is a lander test craft built by Armadillo Aerospace.  It was flown in a tethered hover flight for over 30 
seconds to produce the data set used herein (see Figure 1).  The RR1 flight data was unique in the respect that it was real 
flight data with high amplitude excitation, an active control system, and mass changes due to fuel use.  However, this da-
ta set did not contain significant changes in natural environments or forward velocity effects as it was a hover test.  The 
RR1 data set consisted of 31,000 samples of three low frequency accelerometers that were sampled at 1,000 samples per 
second and useful for 1.4 to 350 Hz (see Figure 2).  The channels were ranged for +/- 16g with a .007g resolution. 
 

 
Figure 1.  RR1 Vehicle in Static and Tethered Flight Configurations 
 

 
Figure 2.  RR1 Vehicle Accelerometers and Coordinate System  
 
The first use of the data was to assess the stability of the modal properties using a sliding window analysis with 2,000 
point (2 sec.) windows.  A 50% overlap or one thousand points (1 sec.) were skipped for each sliding window move.  
This allowed 30 different windows to be generated out of the full 31,000 sample time records.  Nine cross and autocorre-
lation functions were calculated from the three sensors.  AUTO-ID with the Eigensystem Realization Algorithm (ERA) 
was used as the modal engine [19].  The Consistent Mode Indicator (CMI) [20] was used with a 50% cut-off.  Frequen-
cies with damping values outside of 0% to 20% were excluded.  Figure 3 shows the original data from the three sensors 
and the frequencies determined for each of the 30 different sliding windows.  The data plots in Figure 3 show a strong Z 
direction mode near 30 Hz.  Additional dynamic content is seen between 125 and 225 Hz with some content above 225 
Hz (Y direction).  The sliding window analysis shown in Figure 3 mirrors these observations.  An important point is that 
neither the sensor magnitudes nor the extracted frequencies appear to change over the times selected. 
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Figure 3.  Three Axis RR1 Data and Sliding Window Analysis Results Using 30 Two Second Windows  
 
Figure 4 shows the variations in frequency and damping for modes near 30, 130, 150, and 200 Hz.  In the Figure 4 data 
near 30 Hz, reasonable stability in the frequencies and typical variations in damping is observed.  The Figure 4 mode 
near 130 Hz plot, also shows reasonable stability in damping and frequency.  In fact the frequency does show a minor in-
creasing trend and the damping is more stable than the mode near 30 Hz.  The modes near 150 and 200 Hz show the un-
usual characteristics of having stable damping but more variability in frequency.  The important information here is that 
(in spite of the 130 Hz frequency) there is little apparent change in modal parameters over flight time. 
 
The next logical step in the analysis of this data is to filter in around a frequency and use a limited dataset to more com-
pletely define specific frequency and damping.  For this exercise, the Y direction sensor was used to attempt to refine the 
assessment of the mode near 30 Hz.  A 4th order Butterworth forward/reverse 10-45 Hz bandpass filter was applied to the 
data.  Figure 5 provides the resulting autocorrelation function (and autospectrum) as well as the frequency/damping re-
sults of processing each 1,000 lag window of the correlation function.  It is important to note that the correlation function 
contains an unexpected “beating” after an initial decay, which manifests itself as instability in the frequency domain. 
 
The correlation function in Figure 5 shows that the first part (approximately 2 seconds) of the trace looks like the ex-
pected decaying sinusoid, although the rest is dominated by the “beating”.  Table 1 shows the results of a more detailed 
assessment of the first 1,000 lags (one second).  Analyses of the first, second, third, and fourth 250 lags are provided as 
well as an analysis of the first 1,000 lags (which envelopes all of the four 250 lag sets).  It can be seen that a fairly consis-
tent 28.2 to 28.3 Hz mode is seen.  The short segment analyses have damping values that vary between 0.4% and 1.1% 
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with the full 1,000 lag analysis suggesting a damping value of 0.8%.  It should be noted that the 1,000 lag analysis is the 
first data point on sliding window 1,000 lag analysis plots of Figure 5.  Hence Figure 5 can be used to understand how 
the analysis results vary for subsequent 1,000 lag analyses.  Table 1 also shows that there are additional higher damped 
loads in the early half second of the correlation functions.  Therefore this data suggests that the first part of the correla-
tion functions decay as expected and contain higher damped modes – but this is not conclusive.  Additional insights will 
be gained using the numerical studies that will be discussed in an upcoming section. 
 

 
Figure 4.  RR1 Frequency and Damping Sliding Window Variations for Modes near 30, 130, 150, and 200 Hz 
 
CASE STUDY 2 – LAUNCH SYSTEM FLIGHT 
The Ares1-X vehicle was a full-up launch system that flew first stage flight including motor ignition, liftoff acoustics, 
aerodynamic flight including maximum dynamic pressure, and motor burn-out.  This flight data has a full suite of the 
characteristics seen in flight data and thus presents a more difficult analysis than the lander data in case study 1 above.  
The fifth author has performed a detailed independent analysis of this launch data and the reader is referred to reference 
[17] for details.  As detailed in [17], the analyst identified the same problems with respect to unexpected “beating” at the 
higher time lags in the correlation functions. 
 
CASE STUDY 3 – SIMPLIFIED NUMERICAL STUDY 
The recent experience (discussed in previous sections) with the analysis of flight data has prompted the need to answer 
some basic questions concerning the data content and processing requirements.  A simplified numerical study was per-
formed to address the two most pressing issues seen in the case studies mentioned above: how does amplitude dependent 
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damping manifest itself in the analysis, and what is the source/mitigation of the beating phenomena.  A single degree-of-
freedom system was developed with a known frequency (10 Hz) and known damping values.  Constant damping (2%) 
and amplitude-dependent damping were both modeled.  Both impulse response and random excitations were applied to 
the system.  Additive random noise of 0%, 5%, and 10% of maximum input force was added to the constant damping 
cases as a side study.  The variable damping schedule for the impulse excitations was 5% for amplitudes above fifty per-
cent of maximum amplitude, 2% for amplitudes between twenty five and fifty percent of maximum amplitude, 1% for 
amplitudes between ten and twenty five percent, and 0.5% below ten percent.  The variable damping schedule for the 
random excitations was 5% for displacement amplitudes above .002 inches and 0.5% below .002 inches.  A Newmark-
Beta scheme was used to integrate the system (with an effective sample frequency of 500 samples per second) and devel-
op traces that were five seconds long for impulse loading and twenty seconds long for random loading.  For the random 
excitation cases, the damping for each step was set based on the displacement magnitude of the intermediate steps. 
 

 
Figure 5. 30 Hz Variations for Sliding 1,000 Lag Window Analysis of Filtered Full-Length RR1 Autocorrelation 
 
Table 1.  Detailed Frequency and Damping for Early Lags of 30Hz Detailed Analysis of RR1 Data 
 

Lags Used Frequency #1 (Hz) Damping #1 (%) Frequency #2 (Hz) Damping #2 (%) 
1st 250 26.9 3.5 28.3 0.4 
2nd 250 27.4 5.1 28.2 1.0 
3rd 250 - - 28.3 0.6 
4th 250 - - 28.3 1.1 
1st 1000 - - 28.2 0.8 

 
The same analysis process was employed on this data as was used on the previous case studies (develop correlation func-
tions and process with a time domain parameter estimation scheme).  Figure 6 shows the impulse response (free decay) 
for the system with the variable damping (regions of the different damping levels are noted) as well as the associated cor-
relation function.  Table 2 shows the results of these impulse response data sets.  It can be seen that the constant case 
with 0% added noise recovers the correct damping and frequency.  Noise has a noticeable but not significant effect on the 
extracted values for this simple study.  The variable damping data produced estimated modes at 10.1 Hz (6.2% damping) 
and 10.0 Hz (0.8% damping) when the correlation function was processed the same as the constant 0% noise case.  The 
split modes with different damping values is expected but the over-compensation of the high damping levels is unex-
pected.  Additionally, the variable damping correlation function was broken into 24 .2 second (100 sample) segments.  
The extracted damping for this part of the study was dependent on the segment analyzed (see Table 2).  The early win-
dows are strong in the higher damping and the later windows reproduce the lowest damping. 
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Figure 7 provides two functions.  The left plot is the autocorrelation of a single time record under random loading with a 
constant damping.  Notice the significant “beating” phenomena that is seen in the longer lags.  This is a reproduction of 
the same effect seen in the first two case studies mentioned above.  The right hand plot of Figure 7 shows an average of 
20 of these correlation functions, each with a different random input.  Notice that the “beating” phenomena is significant-
ly reduced after averaging.  In this study, averaging provided the most dramatic reduction in the “beating”.  Table 2 
clearly shows the adverse effects of this beating on the damping estimates (1.4 to 3.0 for each of the 20 autocorrelation 
functions processed individually).  This is not an unexpected finding but is critically important to understanding and po-
tentially mitigating some difficulties in estimating damping from flight data.  Most of the low frequency bands in flight 
data are not amenable to temporal averaging to reduce this inherent noise as the system is changing too rapidly.  The al-
ternatives are to use only the early part of the correlation functions, perform spatial averaging of several sensors, or uti-
lizing force estimation procedures to attempt to reduce the random component of the responses.   
 

 
 
Figure 6.  Impulse Response and Autocorrelation Functions for 10 Hz Case with 5.0% to .5% Variable Damping 
 
Figure 8 shows the displacement response of the 10 Hz system with variable damping and a random input.  Three differ-
ent segments of the time history are denoted on the plot.  The first exercise with the random data was to process these 
segments separately to understand how the damping might manifest itself.  Auto-correlation functions associated with 
each segment are provided in the other plots of Figure 8.  Table 2 shows the results of processing the correlation func-
tions associated with these three segments.  It can be seen that the modal frequency is extracted reasonably well but the 
damping values are different than expected (neither 5 Hz nor .5 Hz are found).  This is an indication that the simulation 
of such a system is non-trivial and the approach used herein may be too simplistic.  The hypothesis going into this study 
was that the early lags of the correlation function would be enhanced in the highly damped responses and the later lags 
would be enhanced in the lightly damped responses (as was seen with the impulse response loading).  However, if this ef-
fect does exist it may not be manifested in this simplified approach. 
 
The next numerical study performed was to assess the results of processing the complete autocorrelation function for the 
random loading/variable damping case.  Table 2 shows the results from processing a correlation function and the results 
using an average of 20 correlation functions each with a different random input.  The comparison seen in Figure 7 shows 
the effects of this averaging on the correlation functions.  The comparative assessments are performed using a sequential 
series of .2 second windows taken from the single or average correlation functions. The results from the first three win-
dows are very similar between the single and the average functions.  Also, neither plot shows the expected 5% damping 
or the alternative 0.5% damping of the intended system.  The resulting 1.3% is some combination of the two and is simi-
lar to the earlier results seen in processing different segments of the time record.  The later windows, which utilize longer 
time lags, show much variation in damping as the numerical “beating” effect dominates the damping estimation.  It is not 
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clear from the data provided in Table 2, but the average correlation function does produce consistent damping values for 
more windows than the single correlation function.  However, once the windows of the average case enter the “beating” 
region, the damping values vary as much as those extracted from the single correlation function.  The major conclusions 
are that it is advantageous to average correlation functions and focus on the early lags of the system.  There are indica-
tions from the impulse data that the correlation function can maintain information on variable damping.  However, this 
work has not yet shown that correlation functions of random excitation cases can retain that same information. 
 
Table 2.  Results of Numerical Study 
 

Excitation 
Type 

True 
Frequency (Hz) 

True 
Damping (%) 

Study  
Parameters 

Estimated  
Frequency (Hz) 

Estimated 
Damping (%) 

Impulse 10.0 2.0 0% noise 10.0 2.0 
Impulse 10.0 2.0 5% noise 10.0 2.1 
Impulse 10.0 2.0 10% noise 10.0 2.3 
Impulse 10.0 5.0 to 0.5 same parameters 

as constant case 
10.1 and 10.0 6.2 and 0.8 

Impulse 10.0 5.0 to 0.5 windows 1,2,3 10.0, 10.0, 10.0 4.7, 4.5, 1.75 
Impulse 10.0 5.0 to 0.5 windows 4,5,6 10.0, 10.0, 10.0  0.9, 1.0, 1.0 
Impulse 10.0 5.0 to 0.5 windows 7,8,9 10.0, 10.0, 10.0 1.0, 1.0, .9 
Impulse 10.0 5.0 to 0.5 segments 10,11 

to 24 
10.0, 10.0, …, 

10.0 
0.6, 0.5, …, 0.5 

Random 10.0 2.0 20 single traces 9.9 to 10.1 1.4 to 3.0 
Random 10.0 2.0 20 trace average 10.0 2.0 
Random 10.0 5.0 and 0.5 segment 1, 2, 3 10.0, 10.0, 9.9 6.0, 1.0, 1.7 
Random 10.0 5.0 and 0.5 windows 1,2,3 

(single trace) 
10.0, 10.0, 10.0 1.3, 1.2, 1.2 

Random 10.0 5.0 and 0.5 windows 4-23 
(single trace) 

9.8 – 10.0 0.3 – 2.1 

Random 10.0 5.0 and 0.5 windows 1,2,3 
(average trace) 

10.0, 10.0, 10.0 1.3, 1.3, 1.3 

Random 10.0 5.0 and 0.5 windows 4-23 
(average trace) 

10.0 – 10.0 -0.3 – 1.9 

 

 
 
Figure 7.  Autocorrelation Function of a Single Random Response and 20 Case Average (Constant Damping) 
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Figure 8.  Displacement History and Acceleration Autocorrelation Function with Variable Damping 
 
CASE STUDY 4 – ESCAPE SYSTEM FLIGHT DATA    
The fourth case study is one of the most difficult applications of operation analysis that is available and the analysis ef-
forts attempted to date have used insights gained from the case studies mentioned previously.  The Pad Abort 1 test flight 
was a test flight of an escape system for a manned vehicle, which occurred in May 2010 at the U.S. Army’s White Sands 
Missile Test Range near Las Cruces, NM.  The test flight is characterized by very short and energetic excitations, rapidly 
depleting fuel, a wide range of excited frequencies, and high assumed flight damping estimates.  Figure 9 shows the PA-1 
vehicle in static and flight.  The vehicle includes a Command Module (CM) test article with active flight control and data 
acquisition systems.  The Launch Abort System (LAS) containing the motors for abort flight, steering control, and jetti-
son is also an active part of the system.   
 
The focus of the initial studies of this flight data have been on the very challenging early burn phase of flight, which is 
the first few seconds of flight with the highest excitation levels and the most rapidly changing system.  A subset of 19 ac-
celerometers covering both the CM and the LAS were used for these studies.  Figure 10 provides example data from two 
of these sensors. These two sensors have been used as the “reference channel” in all the early burn analyses to date.  Note 
that the time axis is given in terms of % of early burn and the frequency axis is provided in terms of % of sampling fre-
quency to avoid any issues with current government-imposed data restrictions.  This approach is intended to protect the 
sanctity of the data yet providing information that experts in the field can use to assess the results of this work.   
 
Figure 11 provides the cross-correlation function between the two sensors shown in Figure 10 in the left hand plot.  Also 
included in the plot is the sum of this cross-correlation function with of the other 18 correlation functions in the right 
hand plot (the sensor trace in the right hand plot in Figure 10 was used as the reference channel for all 19 correlations).  
This average of the 19 correlation functions is intended to implement the lessons learned in analytical studies shown pre-
viously.  There are not enough time records (and the system is changing to fast) to average the data temporally, so this 
spatial averaging of data from a distributed set of sensors is used.  Although neither of the functions shown in Figure 11 
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looks like the damped sinusoidal response expected, the sum of all correlation functions does show more distinct dynam-
ic phenomena at the higher frequencies. 
 

 
Figure 9. PA-1 Vehicle and Test Flight. 
 

 
Figure 10. Two PA-1 Accelerometer Traces with Time and Frequency Domain Representations 
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Figure 11. Cross-Correlation Function between Two PA-1 Responses with the Sum of 19 Correlations Functions 
 
The most consistent analysis of the PA-1 data in this study has been focused on first three primary bending modes of the 
structure using 4th order Butterworth filters (used in a forward/reverse mode) around each assumed mode.  The band-
width of the filters is 1.2 % of the sampling frequency wide.  A sliding window analysis is then used to assess the varia-
bility of the frequency and damping in each filtered dataset.  Each sliding window is 21% of the total early burn time and 
is incremented by 1.3% of the early burn time to allow 60 separate analyses over the early burn flight time.  Figure 12 
shows an example of the results for the analysis around the first bending.  The results for the sliding window analysis are 
provided in the left hand plot as well as the extracted results for a potential mode for the latter part of the burn (the right 
hand plot).  In the sliding window analysis there are a significant number of noise modes, but more significantly are the 
consistent trends of the potential bending modes.  Obtaining such consistent trends has been a primary focus of this flight 
data analyses to-date.  The modal frequency has a reasonable and consistent trend for similar analyses.  The damping has 
a trend but is not consistent (although similar to past flight damping estimates [10, 11]).  The damping could be affected 
by the natural environment changes, control system forcing functions, or inconsistencies in the local fit.  The next phase 
of this analysis would entail going to these specific windows between 63 and 71 and performing more detailed analyses.  
Regardless of additional work to understand this unusual trend, the results provided would suggest that typical values of 
1% to 2% should be maintained for the damping in this mode for future flight analyses.  Another finding is that the dy-
namic properties are changing too rapidly for the entire early burn to be used as a monolithic analysis. 
 
Figure 13 contains the sliding window analysis results for a narrow band of frequencies around the second bending mode 
of the system in the left hand plot.  There are several dynamic phenomena that show distinct trends.  The mode that is 
likely one of the second bending modes is shown in the right hand plot.  The frequency is showing a fairly consistent 
trend of increasing frequency as the fuel in the abort motor is quickly burned in this flight phase.  The damping is show-
ing quite a bit of variation throughout the flight (from 0.5% to 4%).  Although this is similar to trends seen in previous 
flight data analyses [10, 11], the numerical study provided earlier suggests that the noise in the data could be significantly 
affecting damping.  However, the assessment of the data if taken at face value is that typical damping values of 1% to 2% 
should be maintained for this frequency range until additional analyses can be performed. 
 
Figure 14 provides the sliding window analyses for the region around the third bending mode.  As expected, there are an 
increasing number of dynamic phenomena as the frequency band increases.  There are also more consistent trends and 
fewer noise modes in this analysis than at the lower modes.  This is potentially due to the fact that there is more apparent 
excitation in the frequency bands (see Figures 10 and 11) and there are more cycles of the damped sinusoids in each win-
dow of correlation data analyzed.  However the frequency and damping trends are similar to what was seen in the earlier 
frequency bands.  The increasing modal density suggests that it would be useful to perform shape fitting to the correla-
tion functions of the individual sensors to extract information help in determining the true nature of the dynamic pheno-
mena captured in these results. 
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Figure 12.  PA-1 Early Burn Results for Sliding Window Analysis around the First Bending Mode 

 
Figure 13.  PA-1 Early Burn Results for Sliding Window Analysis around the Second Bending Mode 

 
Figure 14.  PA-1 Early Burn Results for Sliding Window Analysis around the Third Bending Mode 
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CONCLUSIONS 
Although the information reported herein is a work in progress, there are several preliminary conclusions that could be 
drawn from the four case studies mentioned herein.  First the most prevalent feature of the analyses performed herein is 
the “beating” phenomena seen in the random excitation data that is typically reduced by averaging in non-flight data sets.  
There were three tools used to help clear up the analyses issues reported in this paper (including the “beating” effect): 
spatially averaging several sensors correlation functions, using the earliest lags in the correlation functions, and applying 
fairly tight bandpass filters to the data.  Also, additional analysis of local time segments is needed to find the true cause 
for the variations in damping seen in the extracted modes.  There are several additional suggestions for forward work that 
have been suggested: continue to understand the complexities of simulating random excitation/variable damping systems; 
implement, apply, and assess more advanced operational analysis tools; perform shape estimations as the next step in 
such analyses; and apply force reconstruction techniques to reduce some of the detrimental noise/forcing function effects.  
In addition, a widely distributed set of time-synchronized flight sensors should be developed, flown, and used for analys-
es to expand the state-of-the-art. 
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